Recovering Secret Keys from Weak Side Channel Traces of Differing Lengths

  • Authors:
  • Colin D. Walter

  • Affiliations:
  • Comodo CA Research Laboratory, Bradford, UK BD7 1HR

  • Venue:
  • CHES '08 Proceeding sof the 10th international workshop on Cryptographic Hardware and Embedded Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Secret key recovery from weak side channel leakage is always a challenge in the presence of standard counter-measures. The use of randomised exponent recodings in RSA or ECC means that, over multiple re-uses of a key, operations which correspond to a given key bit are not aligned in the traces. This enhances the difficulties because traces cannot be averaged to improve the signal-to-noise ratio.The situation can be described using a hidden Markov model (HMM) but the standard solution is computationally infeasible when many traces have to be processed. Previous work has not provided a satisfactory way out. Here, instead of ad hocsequential processing of complete traces, trace prefixes are combined naturally in parallel. This results in the systematic extraction of a much higher proportion of the information theoretic content of the leakage, enabling many keys of typical ECC length to be recovered with a computationally feasible search through a list of most likely values. Moreover, likely errors can now be located very easily.