Low Static Powered Asynchronous Data Transfer for GALS System

  • Authors:
  • Myeong-Hoon Oh;Seongwoon Kim

  • Affiliations:
  • -;-

  • Venue:
  • IEICE - Transactions on Information and Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

For a globally asynchronous locally synchronous (GALS) system, data transfer mechanisms based on a current-mode multiple valued logic (CMMVL) has been studied to reduce complexity and power dissipation of wires. However, these schemes consume considerable amount of power even in idle states because of the static power caused by their inherent structure. In this paper, new encoder and decoder circuits using CMMVL are suggested to reduce the static power. The effectiveness of the proposed data transfer is validated by comparisons with the previous CMMVL scheme and conventional voltage-mode schemes such as dual-rail and 1-of-4 encodings through simulation with a 0.25-μm CMOS technology. Simulation results demonstrate that the proposed CMMVL scheme significantly reduces power consumption of the previous one and is superior to dual-rail and 1-of-4 schemes over wire length of 2 mm and 4 mm, respectively.