Memory Allocation for Multi-Resolution Image Processing

  • Authors:
  • Yasuhiro Kobayashi;Masanori Hariyama;Michitaka Kameyama

  • Affiliations:
  • -;-;-

  • Venue:
  • IEICE - Transactions on Information and Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hierarchical approaches using multi-resolution images are well-known techniques to reduce the computational amount without degrading quality. One major issue in designing image processors is to design a memory system that supports parallel access with a simple interconnection network. The complexity of the interconnection network mainly depends on memory allocation; it maps pixels onto memory modules and determines the required number of memory modules. This paper presents a memory allocation method to minimize the number of memory modules for image processing using multi-resolution images. For efficient search, the proposed method exploits the regularity of window-type image processing. A practical example demonstrates that the number of memory modules is reduced to less than 14% that of conventional methods.