Online Task Scheduling for the FPGA-Based Partially Reconfigurable Systems

  • Authors:
  • Yi Lu;Thomas Marconi;Koen Bertels;Georgi Gaydadjiev

  • Affiliations:
  • Computer Engineering, Delft University of Technology, The Netherlands;Computer Engineering, Delft University of Technology, The Netherlands;Computer Engineering, Delft University of Technology, The Netherlands;Computer Engineering, Delft University of Technology, The Netherlands

  • Venue:
  • ARC '09 Proceedings of the 5th International Workshop on Reconfigurable Computing: Architectures, Tools and Applications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given the FPGA-based partially reconfigurable systems, hardware tasks can be configured into (or removed from) the FPGA fabric without interfering with other tasks running on the same device. In such systems, the efficiency of task scheduling algorithms directly impacts the overall system performance. By using previously proposed 2D scheduling model, existing algorithms could not provide an efficient way to find all suitable allocations. In addition, most of them ignored the single reconfiguration port constraint and inter-task dependencies. Further more, to our best knowledge there is no previous work investigating in the impact on the scheduling result by reusing already placed tasks. In this paper, we focus on online task scheduling and propose task scheduling solution that takes the ignored constraints into account. In addition, a novel "reuse and partial reuse" approach is proposed. The simulation results show that our proposed solution achieves shorter application completion time up to 43.9% and faster single task response time up to 63.8% compared to the previously proposed stuffing algorithm.