Learning Minimal Separating DFA's for Compositional Verification

  • Authors:
  • Yu-Fang Chen;Azadeh Farzan;Edmund M. Clarke;Yih-Kuen Tsay;Bow-Yaw Wang

  • Affiliations:
  • National Taiwan University,;University of Toronto,;Carnegie Mellon University,;National Taiwan University,;Academia Sinica,

  • Venue:
  • TACAS '09 Proceedings of the 15th International Conference on Tools and Algorithms for the Construction and Analysis of Systems: Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Algorithms for learning a minimal separating DFA of two disjoint regular languages have been proposed and adapted for different applications. One of the most important applications is learning minimal contextual assumptions in automated compositional verification. We propose in this paper an efficient learning algorithm, called , that learns and generates a minimal separating DFA. Our algorithm has a quadratic query complexity in the product of sizes of the minimal DFA's for the two input languages. In contrast, the most recent algorithm of Gupta et al. has an exponential query complexity in the sizes of the two DFA's. Moreover, experimental results show that our learning algorithm significantly outperforms all existing algorithms on randomly-generated example problems. We describe how our algorithm can be adapted for automated compositional verification. The adapted version is evaluated on the LTSA benchmarks and compared with other automated compositional verification approaches. The result shows that our algorithm surpasses others in 30 of 49 benchmark problems.