SAT-based compositional verification using lazy learning

  • Authors:
  • Nishant Sinha;Edmund Clarke

  • Affiliations:
  • Carnegie Mellon University;Carnegie Mellon University

  • Venue:
  • CAV'07 Proceedings of the 19th international conference on Computer aided verification
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

A recent approach to automated assume-guarantee reasoning (AGR) for concurrent systems relies on computing environment assumptions for components using the L* algorithm for learning regular languages.While this approach has been investigated extensively for message passing systems, it still remains a challenge to scale the technique to large shared memory systems, mainly because the assumptions have an exponential communication alphabet size. In this paper, we propose a SAT-based methodology that employs both induction and interpolation to implement automated AGR for shared memory systems. The method is based on a new lazy approach to assumption learning, which avoids an explicit enumeration of the exponential alphabet set during learning by using symbolic alphabet clustering and iterative counterexample-driven localized partitioning. Preliminary experimental results on benchmarks in Verilog and SMV are encouraging and show that the approach scales well in practice.