Storage modeling for power estimation

  • Authors:
  • Miriam Allalouf;Yuriy Arbitman;Michael Factor;Ronen I. Kat;Kalman Meth;Dalit Naor

  • Affiliations:
  • IBM Haifa Research Labs, Israel;IBM Haifa Research Labs, Israel;IBM Haifa Research Labs, Israel;IBM Haifa Research Labs, Israel;IBM Haifa Research Labs, Israel;IBM Haifa Research Labs, Israel

  • Venue:
  • SYSTOR '09 Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Power consumption is a major issue in today's datacenters. Storage typically comprises a significant percentage of datacenter power. Thus, understanding, managing, and reducing storage power consumption is an essential aspect of any efforts that address the total power consumption of datacenters. We developed a scalable power modeling method that estimates the power consumption of storage workloads. The modeling concept is based on identifying the major workload contributors to the power consumed by the disk arrays. To estimate the power consumed by a given host workload, our method translates the workload to the primitive activities induced on the disks. In addition, we identified that I/O queues have a fundamental influence on the power consumption. Our power estimation results are highly accurate, with only 2% deviation for typical random workloads with small transfer sizes (up to 8K), and a deviation of up to 8% for workloads with large transfer sizes. We successfully integrated our modeling into a power-aware capacity planning tool to predict system power requirements and integrated it into an online storage system to provide online estimation for the power consumed.