Non-monotone submodular maximization under matroid and knapsack constraints

  • Authors:
  • Jon Lee;Vahab S. Mirrokni;Viswanath Nagarajan;Maxim Sviridenko

  • Affiliations:
  • IBM TJ Watson Research, Yorktown Heights, NY, USA;Google Research, New York, NY, USA;Carnegie Mellon University, Pittsburgh, PA, USA;IBM TJ Watson Research, Yorktown Heights, NY, USA

  • Venue:
  • Proceedings of the forty-first annual ACM symposium on Theory of computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the first constant-factor approximation algorithm for maximizing any non-negative submodular function subject to multiple matroid or knapsack constraints. We emphasize that our results are for non-monotone submodular functions. In particular, for any constant k, we present a (1/k+2+1/k+ε)-approximation for the submodular maximization problem under k matroid constraints, and a (1/5-ε)-approximation algorithm for this problem subject to k knapsack constraints (ε0 is any constant). We improve the approximation guarantee of our algorithm to 1/k+1+{1/k-1}+ε for k≥2 partition matroid constraints. This idea also gives a ({1/k+ε)-approximation for maximizing a monotone submodular function subject to k≥2 partition matroids, which improves over the previously best known guarantee of 1/k+1.