Maximizing a Monotone Submodular Function Subject to a Matroid Constraint

  • Authors:
  • Gruia Calinescu;Chandra Chekuri;Martin Pál;Jan Vondrák

  • Affiliations:
  • calinescu@iit.edu;chekuri@cs.illinois.edu;mpal@google.com;jvondrak@us.ibm.com

  • Venue:
  • SIAM Journal on Computing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Let $f:2^X \rightarrow \cal R_+$ be a monotone submodular set function, and let $(X,\cal I)$ be a matroid. We consider the problem ${\rm max}_{S \in \cal I} f(S)$. It is known that the greedy algorithm yields a $1/2$-approximation [M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, Math. Programming Stud., no. 8 (1978), pp. 73-87] for this problem. For certain special cases, e.g., ${\rm max}_{|S| \leq k} f(S)$, the greedy algorithm yields a $(1-1/e)$-approximation. It is known that this is optimal both in the value oracle model (where the only access to $f$ is through a black box returning $f(S)$ for a given set $S$) [G. L. Nemhauser and L. A. Wolsey, Math. Oper. Res., 3 (1978), pp. 177-188] and for explicitly posed instances assuming $P \neq NP$ [U. Feige, J. ACM, 45 (1998), pp. 634-652]. In this paper, we provide a randomized $(1-1/e)$-approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [J. Combin. Optim., 8 (2004), pp. 307-328], and a continuous greedy process that may be of independent interest. As a special case, our algorithm implies an optimal approximation for the submodular welfare problem in the value oracle model [J. Vondrák, Proceedings of the $38$th ACM Symposium on Theory of Computing, 2008, pp. 67-74]. As a second application, we show that the generalized assignment problem (GAP) is also a special case; although the reduction requires $|X|$ to be exponential in the original problem size, we are able to achieve a $(1-1/e-o(1))$-approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.