Improved competitive ratios for submodular secretary problems

  • Authors:
  • Moran Feldman;Joseph Seffi Naor;Roy Schwartz

  • Affiliations:
  • Computer Science Dept., Technion, Haifa, Israel;Computer Science Dept., Technion, Haifa, Israel;Computer Science Dept., Technion, Haifa, Israel

  • Venue:
  • APPROX'11/RANDOM'11 Proceedings of the 14th international workshop and 15th international conference on Approximation, randomization, and combinatorial optimization: algorithms and techniques
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Classical Secretary Problem was introduced during the 60's of the 20th century, nobody is sure exactly when. Since its introduction, many variants of the problem have been proposed and researched. In the classical secretary problem, and many of its variant, the input (which is a set of secretaries, or elements) arrives in a random order. In this paper we apply to the secretary problem a simple observation which states that the random order of the input can be generated by independently choosing a random continuous arrival time for each secretary. Surprisingly, this simple observation enables us to improve the competitive ratio of several known and studied variants of the secretary problem. In addition, in some cases the proofs we provide assuming random arrival times are shorter and simpler in comparison to existing proofs. In this work we consider three variants of the secretary problem, all of which have the same objective of maximizing the value of the chosen set of secretaries given a monotone submodular function f. In the first variant we are allowed to hire a set of secretaries only if it is an independent set of a given partition matroid. The second variant allows us to choose any set of up to k secretaries. In the last and third variant, we can hire any set of secretaries satisfying a given knapsack constraint.