Constrained non-monotone submodular maximization: offline and secretary algorithms

  • Authors:
  • Anupam Gupta;Aaron Roth;Grant Schoenebeck;Kunal Talwar

  • Affiliations:
  • Carnegie Mellon University, Pittsburgh, PA;Microsoft Research New England, Cambridge, MA;Princeton University, Princeton, NJ;Microsoft Research, Mountain View, CA

  • Venue:
  • WINE'10 Proceedings of the 6th international conference on Internet and network economics
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

Constrained submodular maximization problems have long been studied, most recently in the context of auctions and computational advertising, with near-optimal results known under a variety of constraints when the submodular function is monotone. In this paper, we give constant approximation algorithms for the non-monotone case that work for p-independence systems (which generalize constraints given by the intersection of p matroids that had been studied previously), where the running time is poly(n, p). Our algorithms and analyses are simple, and essentially reduce non-monotone maximization to multiple runs of the greedy algorithm previously used in the monotone case. We extend these ideas to give a simple greedy-based constant factor algorithms for non-monotone submodular maximization subject to a knapsack constraint, and for (online) secretary setting (where elements arrive one at a time in random order and the algorithm must make irrevocable decisions) subject to uniform matroid or a partition matroid constraint. Finally, we give an O(log k) approximation in the secretary setting subject to a general matroid constraint of rank k.