On the approximability of budget feasible mechanisms

  • Authors:
  • Ning Chen;Nick Gravin;Pinyan Lu

  • Affiliations:
  • Nanyang Technological University, Singapore;Nanyang Technological University, Singapore, and Mathematical Institute RAS, Russia;Microsoft Research Asia

  • Venue:
  • Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for monotone submodular functions: We give a randomized mechanism with an approximation ratio of 7.91 (improving on the previous best-known result 233.83), and a deterministic mechanism with an approximation ratio of 8.34. We also study the knapsack problem, which is a special submodular function, give a 2 + √2 approximation deterministic mechanism (improving on the previous best-known result 5), and a 3 approximation randomized mechanism. We provide similar results for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group. Finally we show a lower bound of 1 + √2 for the approximation ratio of deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general monotone submodular functions. Our lower bounds are unconditional, and do not rely on any computational or complexity assumptions.