MCP: An Energy-Efficient Code Distribution Protocol for Multi-Application WSNs

  • Authors:
  • Weijia Li;Youtao Zhang;Bruce Childers

  • Affiliations:
  • Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260;Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260;Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260

  • Venue:
  • DCOSS '09 Proceedings of the 5th IEEE International Conference on Distributed Computing in Sensor Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we study the code distribution problem in multi-application wireless sensor networks (MA-WSNs), i.e., sensor networks that can support multiple applications. While MA-WSNs have many advantages over traditional WSNs, they tend to require frequent code movements in the network, and thus here new challenges for designing energy efficient code dissemination protocols. We propose MCP, a stateful Multicast based Code redistribution Protocol for achieving energy efficiency. Each node in MCP maintains a small table to record the interesting information of known applications. The table enables sending out multicast-based code dissemination requests such that only a subset of neighboring sensors contribute to code dissemination. Compared to broadcasting based schemes, MCP greatly reduces signal collision and saves both the dissemination time and reduces the number of dissemination messages. Our experiments results show that MCP can reduce dissemination time by 25% and message overhead by 20% under various network settings.