A Commitment-Consistent Proof of a Shuffle

  • Authors:
  • Douglas Wikström

  • Affiliations:
  • CSC KTH Stockholm, Sweden

  • Venue:
  • ACISP '09 Proceedings of the 14th Australasian Conference on Information Security and Privacy
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce a pre-computation technique that drastically reduces the online computational complexity of mix-nets based on homomorphic cryptosystems. More precisely, we show that there is a permutation commitment scheme that allows a mix-server to: (1) commit to a permutation and efficiently prove knowledge of doing so correctly in the offline phase, and (2) shuffle its input and give an extremely efficient commitment-consistent proof of a shuffle in the online phase. We prove our result for a general class of shuffle maps that generalize all known types of shuffles, and even allows shuffling ciphertexts of different cryptosystems in parallel.