Design & Implementation of Real-time Parallel GA Operators on the IBM Cell Processor

  • Authors:
  • Pascal Comte

  • Affiliations:
  • Brock University, Department of Computer Science, 500, Glenridge Avenue, St. Catharines, Ontario, Canada

  • Venue:
  • Proceedings of the 11th Annual conference on Genetic and evolutionary computation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a set of single-core designed parallel SIMD Genetic Algorithm (GA) operators aimed at increasing computational speed of genetic algorithms. We use a discrete-valued chromosome representation. The explored operators include: single gene mutation, uniform crossover and a fitness evaluation function. We discuss their low-level hardware implementations on the Cell Processor. We use the Knapsack problem as a proof of concept, demonstrating performances of our operators. We measure the scalability in terms of generations per second. Using the architecture of the Cell Processor and a static population size of 648 individuals, we achieved 11.6 million generations per second on one Synergetic Processing Element (SPE) core for a problem size n = 8 and 9.5 million generations per second for a problem size n = 16. Generality for a problem size n multiple of 8 is also shown. Executing six independent concurrent GA runs, one per SPE core, allows for a rough overall estimate of 70 million generations per second and 57 million generations per second for problem sizes of n = 8 and n = 16 respectively.