A Probabilistic Framework for 3D Visual Object Representation

  • Authors:
  • Renaud Detry;Nicolas Pugeault;Justus H. Piater

  • Affiliations:
  • University of Liège, Belgium;University of Southern Denmark, Denmark;University of Liège, Belgium

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 2009

Quantified Score

Hi-index 0.14

Visualization

Abstract

We present an object representation framework that encodes probabilistic spatial relations between 3D features and organizes these features in a hierarchy. Features at the bottom of the hierarchy are bound to local 3D descriptors. Higher level features recursively encode probabilistic spatial configurations of more elementary features. The hierarchy is implemented in a Markov network. Detection is carried out by a belief propagation algorithm, which infers the pose of high-level features from local evidence and reinforces local evidence from globally consistent knowledge, effectively producing a likelihood for the pose of the object in the detection scene. We also present a simple learning algorithm that autonomously builds hierarchies from local object descriptors. We explain how to use our framework to estimate the pose of a known object in an unknown scene. Experiments demonstrate the robustness of hierarchies to input noise, viewpoint changes, and occlusions.