Continuous surface-point distributions for 3D object pose estimation and recognition

  • Authors:
  • Renaud Detry;Justus Piater

  • Affiliations:
  • University of Liège, Belgium;University of Liège, Belgium

  • Venue:
  • ACCV'10 Proceedings of the 10th Asian conference on Computer vision - Volume Part III
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a 3D, probabilistic object-surface model, along with mechanisms for probabilistically integrating unregistered 2.5D views into the model, and for segmenting model instances in cluttered scenes. The object representation is a probabilistic expression of object parts through smooth surface-point distributions obtained by kernel density estimation on 3D point clouds. A multi-part, viewpoint-invariant model is learned incrementally from a set of roughly segmented, unregistered views, by sequentially registering and fusing the views with the incremental model. Registration is conducted by nonparametric inference of maximum-likelihood model parameters, using Metropolis-Hastings MCMC with simulated annealing. The learning of viewpoint-invariant models and the applicability of our method to pose estimation, object detection, and object recognition is demonstrated on 3D-scan data, providing qualitative, quantitative and comparative evaluations.