Probabilistic object models for pose estimation in 2D images

  • Authors:
  • Damien Teney;Justus Piater

  • Affiliations:
  • University of Liège, Belgium;University of Innsbruck, Austria

  • Venue:
  • DAGM'11 Proceedings of the 33rd international conference on Pattern recognition
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel way of performing pose estimation of known objects in 2D images. We follow a probabilistic approach for modeling objects and representing the observations. These object models are suited to various types of observable visual features, and are demonstrated here with edge segments. Even imperfect models, learned from single stereo views of objects, can be used to infer the maximum-likelihood pose of the object in a novel scene, using a Metropolis-Hastings MCMC algorithm, given a single, calibrated 2D view of the scene. The probabilistic approach does not require explicit model-to-scene correspondences, allowing the system to handle objects without individually-identifiable features. We demonstrate the suitability of these object models to pose estimation in 2D images through qualitative and quantitative evaluations, as we show that the pose of textureless objects can be recovered in scenes with clutter and occlusion.