Parallel Particle Swarm Optimization with Adaptive Asynchronous Migration Strategy

  • Authors:
  • Zhi-Hui Zhan;Jun Zhang

  • Affiliations:
  • Department of Computer Science, Sun Yat-sen university, China 510275;Department of Computer Science, Sun Yat-sen university, China 510275

  • Venue:
  • ICA3PP '09 Proceedings of the 9th International Conference on Algorithms and Architectures for Parallel Processing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a parallel particle swarm optimization (PPSO) by dividing the search space into sub-spaces and using different swarms to optimize different parts of the space. In the PPSO framework, the search space is regarded as a solution vector and is divided into two sub-vectors. Two cooperative swarms work in parallel and each swarm only optimizes one of the sub-vectors. An adaptive asynchronous migration strategy (AAMS) is designed for the swarms to communicate with each other. The PPSO benefits from the following two aspects. First, the PPSO divides the search space and each swarm can focus on optimizing a smaller scale problem. This reduces the problem complexity and makes the algorithm promising in dealing with large scale problems. Second, the AAMS makes the migration adapt to the search environment and results in a very timing and efficient communication fashion. Experiments based on benchmark functions have demonstrated the good performance of the PPSO with AAMS on both solution accuracy and convergence speed when compared with the traditional serial PSO (SPSO) and the PPSO with fixed migration frequency.