Topological mapping through distributed, passive sensors

  • Authors:
  • Dimitri Marinakis;Gregory Dudek

  • Affiliations:
  • Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada;Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada

  • Venue:
  • IJCAI'07 Proceedings of the 20th international joint conference on Artifical intelligence
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we address the problem of inferring the topology, or inter-node navigability, of a sensor network given non-discriminating observations of activity in the environment. By exploiting motion present in the environment, our approach is able to recover a probabilistic model of the sensor network connectivity graph and the underlying traffic trends. We employ a reasoning system made up of a stochastic Expectation Maximization algorithm and a higher level search strategy employing the principle of Occam's Razor to look for the simplest solution explaining the data. The technique is assessed through numerical simulations and experiments conducted on a real sensor network.