Learning topological maps with weak local odometric information

  • Authors:
  • Hagit Shatkay;Leslie Pack Kaelbling

  • Affiliations:
  • Computer Science Department, Brown University, Providence, RI;Computer Science Department, Brown University, Providence, RI

  • Venue:
  • IJCAI'97 Proceedings of the Fifteenth international joint conference on Artifical intelligence - Volume 2
  • Year:
  • 1997

Quantified Score

Hi-index 0.02

Visualization

Abstract

Topological maps provide a useful abstraction for robotic navigation and planning. Although stochastic maps can theoretically be learned using the Baum-Welch algorithm, without strong prior constraint on the structure of the model it is slow to converge, requires a great deal of data, and is often stuck in local minima. In this paper, we consider a special case of hidden Markov models for robot-navigation environments, in which states are associated with points in a metric configuration space. We assume that the robot has some odometric ability to measure relative transformations between its configurations. Such odometry is typically not precise enough to suffice for building a global map, but it does give valuable local information about relations between adjacent states. We present an extension of the Baum-Welch algorithm that takes advantage of this local odometric information, yielding faster convergence to better solutions with less data.