Predictive state representations: a new theory for modeling dynamical systems

  • Authors:
  • Satinder Singh;Michael R. James;Matthew R. Rudary

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • UAI '04 Proceedings of the 20th conference on Uncertainty in artificial intelligence
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modeling dynamical systems, both for control purposes and to make predictions about their behavior, is ubiquitous in science and engineering. Predictive state representations (PSRs) are a recently introduced class of models for discrete-time dynamical systems. The key idea behind PSRs and the closely related OOMs (Jaeger's observable operator models) is to represent the state of the system as a set of predictions of observable outcomes of experiments one can do in the system. This makes PSRs rather different from history-based models such as nth-order Markov models and hidden-state-based models such as HMMs and POMDPs. We introduce an interesting construct, the system-dynamics matrix, and show how PSRs can be derived simply from it. We also use this construct to show formally that PSRs are more general than both nth-order Markov models and HMMs/POMDPs. Finally, we discuss the main difference between PSRs and OOMs and conclude with directions for future work.