Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach

  • Authors:
  • Kazuo Tanaka;Hiroshi Ohtake;Hua O. Wang

  • Affiliations:
  • Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Chofu, Japan;Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Chofu, Japan;Department of Aerospace and Mechanical Engineering, Boston University, Boston, MA

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2009

Quantified Score

Hi-index 0.01

Visualization

Abstract

This correspondence paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this correspondence paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.