Randomized model predictive control for robot navigation

  • Authors:
  • Jorge L. Piovesan;Herbert G. Tanner

  • Affiliations:
  • K&A Wireless LLC, Albuquerque NM;Department of Mechanical Engineering at the University of Delaware, Newark DE

  • Venue:
  • ICRA'09 Proceedings of the 2009 IEEE international conference on Robotics and Automation
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The paper suggests a new approach to navigation of mobile robots, based on nonlinear model predictive control and using a navigation function as a control Lyapunov function. In this approach, the nonlinear optimal control problem is treated using randomized algorithms. The advantage of the proposed combination of navigation functions for robot motion planning with randomized algorithms within an MPC framework, is that the control design offers stability by design, is platform independent, and allows the designer to trade-off performance for (computation) speed, according to the application requirements.