Interest point detection and scale selection in space-time

  • Authors:
  • Ivan Laptev;Tony Lindeberg

  • Affiliations:
  • Computational Vision and Active Perception Laboratory, Dept. of Numerical Analysis and Computing Science, KTH, Stockholm, Sweden;Computational Vision and Active Perception Laboratory, Dept. of Numerical Analysis and Computing Science, KTH, Stockholm, Sweden

  • Venue:
  • Scale Space'03 Proceedings of the 4th international conference on Scale space methods in computer vision
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Several types of interest point detectors have been proposed for spatial images. This paper investigates how this notion can be generalised to the detection of interesting events in space-time data. Moreover, we develop a mechanism for spatio-temporal scale selection and detect events at scales corresponding to their extent in both space and time. To detect spatio-temporal events, we build on the idea of the Harris and Förstner interest point operators and detect regions in space-time where the image structures have significant local variations in both space and time. In this way, events that correspond to curved space-time structures are emphasised, while structures with locally constant motion are disregarded. To construct this operator, we start from a multi-scale windowed second moment matrix in space-time, and combine the determinant and the trace in a similar way as for the spatial Harris operator. All spacetime maxima of this operator are then adapted to characteristic scales by maximising a scale-normalised space-time Laplacian operator over both spatial scales and temporal scales. The motivation for performing temporal scale selection as a complement to previous approaches of spatial scale selection is to be able to robustly capture spatio-temporal events of different temporal extent. It is shown that the resulting approach is truly scale invariant with respect to both spatial scales and temporal scales. The proposed concept is tested on synthetic and real image sequences. It is shown that the operator responds to distinct and stable points in space-time that often correspond to interesting events. The potential applications of the method are discussed.