Camera calibration from silhouettes under incomplete circular motion with a constant interval angle

  • Authors:
  • Po-Hao Huang;Shang-Hong Lai

  • Affiliations:
  • Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan;Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

  • Venue:
  • ACCV'07 Proceedings of the 8th Asian conference on Computer vision - Volume Part I
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose an algorithm for camera calibration from silhouettes under circular motion with an unknown constant interval angle. Unlike previous silhouette-based methods based on surface of revolution, the proposed algorithm can be applied to sparse and incomplete image sequences. Under the assumption of circular motion with a constant interval angle, epipoles of successive image pairs remain constant and can be determined from silhouettes. A pair of epipoles formed by a certain interval angle can provide a constraint on the angle and focal length. With more pairs of epipoles recovered, the focal length can be determined from the one that most satisfies the constraints and determine the interval angle concurrently. The rest of camera parameters can be recovered from image invariants. Finally, the estimated parameters are optimized by minimizing the epipolar tangency constraints. Experimental results on both synthetic and real images are shown to demonstrate its performance.