Perfectly-secure MPC with linear communication complexity

  • Authors:
  • Zuzana Beerliová-Trubíniová;Martin Hirt

  • Affiliations:
  • ETH Zurich, Department of Computer Science, Zurich;ETH Zurich, Department of Computer Science, Zurich

  • Venue:
  • TCC'08 Proceedings of the 5th conference on Theory of cryptography
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Secure multi-party computation (MPC) allows a set of n players to securely compute an agreed function, even when up to t players are under the control of an adversary. Known perfectly secure MPC protocols require communication of at least Ω(n3) field elements per multiplication, whereas cryptographic or unconditional security is possible with communication linear in the number of players. We present a perfectly secure MPC protocol communicating O(n) field elements per multiplication. Our protocol provides perfect security against an active, adaptive adversary corrupting t n/3 players, which is optimal. Thus our protocol improves the security of the most efficient information-theoretically secure protocol at no extra costs, respectively improves the efficiency of perfectly secure MPC protocols by a factor of Ω(n2). To achieve this, we introduce a novel technique - constructing detectable protocols with the help of so-called hyper-invertible matrices, which we believe to be of independent interest. Hyper-invertible matrices allow (among other things) to perform efficient correctness checks of many instances in parallel, which was until now possible only if error-probability was allowed.