Perfectly-secure multiplication for any t n/3

  • Authors:
  • Gilad Asharov;Yehuda Lindell;Tal Rabin

  • Affiliations:
  • Bar-Ilan University;Bar-Ilan University;IBM T.J. Watson Research

  • Venue:
  • CRYPTO'11 Proceedings of the 31st annual conference on Advances in cryptology
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the setting of secure multiparty computation, a set of n parties with private inputs wish to jointly compute some functionality of their inputs. One of the most fundamental results of information-theoretically secure computation was presented by Ben-Or, Goldwasser and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can be computed with perfect security, in the private channels model. The most technically challenging part of this result is a protocol for multiplying two shared values, with perfect security in the presence of up to t n/3 malicious adversaries. In this paper we provide a full specification of the BGW perfect multiplication protocol and prove its security. This includes one new step for the perfect multiplication protocol in the case of n/4 ≤ t n/3. As in the original BGW protocol, this protocol works whenever the parties hold univariate (Shamir) shares of the input values. In addition, we present a new multiplication protocol that utilizes bivariate secret sharing in order to achieve higher efficiency while maintaining a round complexity that is constant per multiplication. Both of our protocols are presented with full proofs of security.