Ab initio whole genome shotgun assembly with mated short reads

  • Authors:
  • Paul Medvedev;Michael Brudno

  • Affiliations:
  • Department of Computer Science, University of Toronto, Canada;Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada

  • Venue:
  • RECOMB'08 Proceedings of the 12th annual international conference on Research in computational molecular biology
  • Year:
  • 2008

Quantified Score

Hi-index 0.01

Visualization

Abstract

Next Generation Sequencing (NGS) technologies are capable of reading millions of short DNA sequences both quickly and cheaply. While these technologies are already being used for resequencing individuals once a reference genome exists, it has not been shown if it is possible to use them for ab initio genome assembly. In this paper, we give a novel network flow-based algorithm that, by taking advantage of the high coverage provided by NGS, accurately estimates the copy counts of repeats in a genome. We also give a second algorithm that combines the predicted copy-counts with mate-pair data in order to assemble the reads into contigs. We run our algorithms on simulated read data from E. Coli and predict copy-counts with extremely high accuracy, while assembling long contigs.