Analysis of power-aware buffering schemes in wireless sensor networks

  • Authors:
  • Yibei Ling;Chung-Min Chen;Shigang Chen

  • Affiliations:
  • Telcordia Technologies, Piscataway, NJ;Telcordia Technologies, Piscataway, NJ;University of Florida, Gainesville, FL

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the power-aware buffering problem in battery-powered sensor networks, focusing on the fixed-size and fixed-interval buffering schemes. The main motivation is to address the yet poorly understood size variation-induced effect on power-aware buffering schemes. Our theoretical analysis elucidates the fundamental differences between the fixed-size and fixed-interval buffering schemes in the presence of data-size variation. It shows that data-size variation has detrimental effects on the power expenditure of the fixed-size buffering in general, and reveals that the size variation induced effects can be either mitigated by a positive skewness or promoted by a negative skewness in size distribution. By contrast, the fixed-interval buffering scheme has an obvious advantage of being eminently immune to the data-size variation. Hence the fixed-interval buffering scheme is a risk-averse strategy for its robustness in a variety of operational environments. In addition, based on the fixed-interval buffering scheme, we establish the power consumption relationship between child nodes and parent node in a static data-collection tree, and give an in-depth analysis of the impact of child bandwidth distribution on the parent's power consumption. This study is of practical significance: it sheds new light on the relationship among power consumption of buffering schemes, power parameters of radio module and memory bank, data arrival rate, and data-size variation, thereby providing well-informed guidance in determining an optimal buffer size (interval) to maximize the operational lifespan of sensor networks.