Fast and accurate NCBI BLASTP: acceleration with multiphase FPGA-based prefiltering

  • Authors:
  • Atabak Mahram;Martin C. Herbordt

  • Affiliations:
  • Boston University, Boston, MA;Boston University, Boston, MA

  • Venue:
  • Proceedings of the 24th ACM International Conference on Supercomputing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

NCBI BLAST has become the de facto standard in bioinformatic approximate string matching and so its acceleration is of fundamental importance. The problem is that it uses complex heuristics which make it difficult to simultaneously achieve both substantial speed-up and exact agreement with the original output. We have previously described how a novel FPGA-based prefilter that performs exhaustive ungapped alignment (EUA) could be used to reduce the computation by over 99.9% without loss of sensitivity. The primary contribution here is to show how the EUA filter can be combined with another filter, this one based on standard 2-hit seeding. The result is a doubling of performance over the previous best implementation, which itself is an order of magnitude faster than the unaccelerated original. Other contributions include new algorithms for both the original EUA and the 2-hit filters and experimental results demonstrating their utility. This new multiphase FPGA-accelerated NCBI BLASTP scales easily and is appropriate for use in large FPGA-based servers such as the Novo-G.