Using training regimens to teach expanding function approximators

  • Authors:
  • Peng Zang;Arya J. Irani;Peng Zhou;Charles L. Isbell, Jr.;Andrea L. Thomaz

  • Affiliations:
  • Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA

  • Venue:
  • Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In complex real-world environments, traditional (tabular) techniques for solving Reinforcement Learning (RL) do not scale. Function approximation is needed, but unfortunately, existing approaches generally have poor convergence and optimality guarantees. Additionally, for the case of human environments, it is valuable to be able to leverage human input. In this paper we introduce Expanding Value Function Approximation (EVFA), a function approximation algorithm that returns the optimal value function given sufficient rounds. To leverage human input, we introduce a new human-agent interaction scheme, training regimens, which allow humans to interact with and improve agent learning in the setting of a machine learning game. In experiments, we show EVFA compares favorably to standard value approximation approaches. We also show that training regimens enable humans to further improve EVFA performance. In our user study, we find that non-experts are able to provide effective regimens and that they found the game fun.