Finding approximate competitive equilibria: efficient and fair course allocation

  • Authors:
  • Abraham Othman;Tuomas Sandholm;Eric Budish

  • Affiliations:
  • Carnegie Mellon University;Carnegie Mellon University;University of Chicago

  • Venue:
  • Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the course allocation problem, a university administrator seeks to efficiently and fairly allocate schedules of over-demanded courses to students with heterogeneous preferences. We investigate how to computationally implement a recently-proposed theoretical solution to this problem (Budish, 2009) which uses approximate competitive equilibria to balance notions of efficiency, fairness, and incentives. Despite the apparent similarity to the well-known combinatorial auction problem we show that no polynomial-size mixed-integer program (MIP) can solve our problem. Instead, we develop a two-level search process: at the master level, the center uses tabu search over the union of two distinct neighborhoods to suggest prices; at the agent level, we use MIPs to solve for student demands in parallel at the current prices. Our method scales near-optimally in the number of processors used and is able to solve realistic-size problems fast enough to be usable in practice.