Finite-SNR diversity-multiplexing tradeoff via asymptotic analysis of large MIMO systems

  • Authors:
  • Sergey Loyka;Georgy Levin

  • Affiliations:
  • School of Information Technology and Engineering, University of Ottawa, ON, Canada;School of Information Technology and Engineering, University of Ottawa, ON, Canada

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2010

Quantified Score

Hi-index 754.84

Visualization

Abstract

Diversity-multiplexing tradeoff (DMT) was characterized asymptotically (SNR-≥ infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The SNR-asymptotic DMT overestimates the finite-SNR one [2]. This paper outlines a number of additional limitations and difficulties of the DMT framework and discusses their implications. Using the recent results on the size-asymptotic (in the number of antennas) outage capacity distribution, the finite-SNR, size-asymptotic DMT is derived for a broad class of fading distributions. The SNR range over which the finite-SNR DMT is accurately approximated by the SNR-asymptotic one is characterized. The multiplexing gain definition is shown to affect critically this range and thus should be carefully selected, so that the SNR-asymptotic DMT is an accurate approximation at realistic SNR values and thus has operational significance to be used as a design criterion. The finite-SNR diversity gain is shown to decrease with correlation and power imbalance in a broad class of fading channels, and such an effect is described in a compact, closed form. Complete characterization of the outage probability (or outage capacity) requires not only the finite-SNR DMT, but also the SNR offset, which is introduced and investigated as well. This offset, which is not accounted for in the DMT framework, is shown to have a significant impact on the outage probability for a broad class of fading channels, especially when the multiplexing gain is small. The analytical results and conclusions are validated via extensive Monte Carlo simulations. Overall, the size-asymptotic DMT represents a valuable alternative to the SNR-asymptotic one.