Sparse non-linear least squares optimization for geometric vision

  • Authors:
  • Manolis I. A. Lourakis

  • Affiliations:
  • Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece

  • Venue:
  • ECCV'10 Proceedings of the 11th European conference on Computer vision: Part II
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Several estimation problems in vision involve the minimization of cumulative geometric error using non-linear least-squares fitting. Typically, this error is characterized by the lack of interdependence among certain subgroups of the parameters to be estimated, which leads to minimization problems possessing a sparse structure. Taking advantage of this sparseness during minimization is known to achieve enormous computational savings. Nevertheless, since the underlying sparsity pattern is problem-dependent, its exploitation for a particular estimation problem requires non-trivial implementation effort, which often discourages its pursuance in practice. Based on recent developments in sparse linear solvers, this paper provides an overview of sparseLM, a generalpurpose software package for sparse non-linear least squares that can exhibit arbitrary sparseness and presents results from its application to important sparse estimation problems in geometric vision.