Secure code update for embedded devices via proofs of secure erasure

  • Authors:
  • Daniele Perito;Gene Tsudik

  • Affiliations:
  • INRIA Rhône-Alpes, France;University of California, Irvine

  • Venue:
  • ESORICS'10 Proceedings of the 15th European conference on Research in computer security
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Remote attestation is the process of verifying internal state of a remote embedded device. It is an important component of many security protocols and applications. Although previously proposed remote attestation techniques assisted by specialized secure hardware are effective, they not yet viable for low-cost embedded devices. One notable alternative is software-based attestation, that is both less costly and more efficient. However, recent results identified weaknesses in some proposed software-based methods, thus showing that security of remote software attestation remains a challenge. Inspired by these developments, this paper explores an approach that relies neither on secure hardware nor on tight timing constraints typical of software-based technqiques. By taking advantage of the bounded memory/storage model of low-cost embedded devices and assuming a small amount of read-only memory (ROM), our approach involves a new primitive - Proofs of Secure Erasure (PoSE-s). We also show that, even though it is effective and provably secure, PoSE-based attestation is not cheap. However, it is particularly well-suited and practical for two other related tasks: secure code update and secure memory/storage erasure. We consider several flavors of PoSE-based protocols and demonstrate their feasibility in the context of existing commodity embedded devices.