On the number of spanning trees a planar graph can have

  • Authors:
  • Kevin Buchin;André Schulz

  • Affiliations:
  • Department of Mathematics and Computer Science, Technical University of Eindhoven;Institut für Mathematsche Logik und Grundlagenforschung, Universität Münster

  • Venue:
  • ESA'10 Proceedings of the 18th annual European conference on Algorithms: Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We prove that any planar graph on n vertices has less than O(5.2852n) spanning trees. Under the restriction that the planar graph is 3-connected and contains no triangle and no quadrilateral the number of its spanning trees is less than O(2.7156n). As a consequence of the latter the grid size needed to realize a 3d polytope with integer coordinates can be bounded by O(147.7n). Our observations imply improved upper bounds for related quantities: the number of cycle-free graphs in a planar graph is bounded by O(6.4884n), the number of plane spanning trees on a set of n points in the plane is bounded by O(158.6n), and the number of plane cycle-free graphs on a set of n points in the plane is bounded by O(194.7n).