Resolution for stochastic Boolean satisfiability

  • Authors:
  • Tino Teige;Martin Fränzle

  • Affiliations:
  • Carl von Ossietzky Universität, Oldenburg, Germany;Carl von Ossietzky Universität, Oldenburg, Germany

  • Venue:
  • LPAR'10 Proceedings of the 17th international conference on Logic for programming, artificial intelligence, and reasoning
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The stochastic Boolean satisfiability (SSAT) problem was introduced by Papadimitriou in 1985 by adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, e.g., in probabilistic planning and, more recently by integrating arithmetic, in probabilistic model checking. In this paper, we first present a new result on the computational complexity of SSAT: SSAT remains PSPACE-complete even for its restriction to 2CNF. Second, we propose a sound and complete resolution calculus for SSAT complementing the classical backtracking search algorithms.