Multiclient identification system using adaptive probabilistic model

  • Authors:
  • Chin-Teng Lin;Linda Siana;Yu-Wen Shou;Chien-Ting Yang

  • Affiliations:
  • Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan;Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan;Department of Computer and Communication Engineering, China University of Technology, Hsinchu, Taiwan;Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, Taiwan

  • Venue:
  • EURASIP Journal on Advances in Signal Processing - Special issue on advanced image processing for defense and security applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive probabilisticmodel (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method can online add a new client and update the information of registered clients due to the constructed APM. The experimental results eventually show the superior performance of our proposed system for both offline and real-time online testing.