Parallelizing Simulated Annealing-Based Placement Using GPGPU

  • Authors:
  • Alexander Choong;Rami Beidas;Jianwen Zhu

  • Affiliations:
  • -;-;-

  • Venue:
  • FPL '10 Proceedings of the 2010 International Conference on Field Programmable Logic and Applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Simulated annealing has became the de facto standard for FPGA placement engines since it provides high quality solutions and is robust under a wide range of objective functions. However, this method will soon become prohibitive due to its sequential nature and since the performance of single-core processor has stagnated. General purpose computing on graphics processing units (GPGPU) offers a promising solution to improve runtime with only commodity hardware. In this work, we develop a highly parallel approach to simulated annealing-based placement using GPGPU. We identify the challenges posed by the GPU architecture and describe effective solutions. An average speedup of about 10x was achieved over conventional placement within 3% of wirelength.