A metaheuristic framework for stochastic combinatorial optimization problems based on GPGPU with a case study on the probabilistic traveling salesman problem with deadlines

  • Authors:
  • Dennis Weyland;Roberto Montemanni;Luca Maria Gambardella

  • Affiliations:
  • -;-;-

  • Venue:
  • Journal of Parallel and Distributed Computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this work we propose a general metaheuristic framework for solving stochastic combinatorial optimization problems based on general-purpose computing on graphics processing units (GPGPU). This framework is applied to the probabilistic traveling salesman problem with deadlines (PTSPD) as a case study. Computational studies reveal significant improvements over state-of-the-art methods for the PTSPD. Additionally, our results reveal the huge potential of the proposed framework and sampling-based methods for stochastic combinatorial optimization problems.