Learning factorizations in estimation of distribution algorithms using affinity propagation

  • Authors:
  • Roberto Santana;Pedro Larraòaga;José A. Lozano

  • Affiliations:
  • Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegacedo, 28660, Boadilla del Monte, Madrid, Spain roberto.santana@upm.es;Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegacedo, 28660, Boadilla del Monte, Madrid, Spain pedro.larranaga@fi.upm.es;Intelligent Systems Group, Department of Computer Science and Artificial Intelligence, University of the Basque Country, 20018, San Sebastian, Spain ja.lozano@ehu.es

  • Venue:
  • Evolutionary Computation
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Estimation of distribution algorithms (EDAs) that use marginal product model factorizations have been widely applied to a broad range of mainly binary optimization problems. In this paper, we introduce the affinity propagation EDA (AffEDA) which learns a marginal product model by clustering a matrix of mutual information learned from the data using a very efficient message-passing algorithm known as affinity propagation. The introduced algorithm is tested on a set of binary and nonbinary decomposable functions and using a hard combinatorial class of problem known as the HP protein model. The results show that the algorithm is a very efficient alternative to other EDAs that use marginal product model factorizations such as the extended compact genetic algorithm (ECGA) and improves the quality of the results achieved by ECGA when the cardinality of the variables is increased.