Low-resource hardware design of an elliptic curve processor for contactless devices

  • Authors:
  • Erich Wenger;Martin Feldhofer;Norbert Felber

  • Affiliations:
  • Institute for Applied Information Processing and Communications, Graz University of Technology;Institute for Applied Information Processing and Communications, Graz University of Technology;Integrated Systems Laboratory, Swiss Federal Institute of Technology Zürich

  • Venue:
  • WISA'10 Proceedings of the 11th international conference on Information security applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Hardware implementations for contactless devices like NFC or RFID tags face fierce constraints concerning the chip area and the power consumption. In this work, we present the low-resource hardware implementation of a 16-bit microprocessor that is able to efficiently perform Elliptic Curve Cryptography (ECC). The highly optimized design features the calculation of the Elliptic Curve Digital Signature Algorithm (ECDSA) using the standardized NIST curve in the finite field Fp192. We carefully selected the underlying algorithms to minimize the required memory resources while also keeping the required runtime within reasonable limits. In total, the microprocessor requires a chip area of 11686 gate equivalents and performs the ECDSA within 1377k clock cycles, which is to our knowledge the smallest implementation of ECDSA using the NIST P-192 curve published so far.