FAST: quick application launch on solid-state drives

  • Authors:
  • Yongsoo Joo;Junhee Ryu;Sangsoo Park;Kang G. Shin

  • Affiliations:
  • Ewha Womans University, Seoul, Korea;Seoul National University, Seoul, Korea;Ewha Womans University, Seoul, Korea;Ewha Womans University, Seoul, Korea and University of Michigan, Ann Arbor, MI

  • Venue:
  • FAST'11 Proceedings of the 9th USENIX conference on File and stroage technologies
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Application launch performance is of great importance to system platform developers and vendors as it greatly affects the degree of users' satisfaction. The single most effective way to improve application launch performance is to replace a hard disk drive (HDD) with a solid state drive (SSD), which has recently become affordable and popular. A natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware optimizer. We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then proposing a new SSD-aware application prefetching scheme, called the Fast Application STarter (FAST). The key idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch. FAST is composed of a set of user-level components and system debugging tools provided by the Linux OS (operating system). In addition, FAST uses a system-call wrapper to automatically detect application launches. Hence, FAST can be easily deployed in any recent Linux versions without kernel recompilation. We implemented FAST on a desktop PC with a SSD running Linux 2.6.32 OS and evaluated it by launching a set of widely-used applications, demonstrating an average of 28% reduction of application launch time as compared to PC without a prefetcher.