An integrated approach to cryptographic mitigation of denial-of-service attacks

  • Authors:
  • Jothi Rangasamy;Douglas Stebila;Colin Boyd;Juan González Nieto

  • Affiliations:
  • Queensland University of Technology, Brisbane, QLD, Australia;Queensland University of Technology, Brisbane, QLD, Australia;Queensland University of Technology, Brisbane, QLD, Australia;Queensland University of Technology, Brisbane, QLD, Australia

  • Venue:
  • Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security
  • Year:
  • 2011

Quantified Score

Hi-index 0.01

Visualization

Abstract

Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.