Probabilistic points-to analysis for java

  • Authors:
  • Qiang Sun;Jianjun Zhao;Yuting Chen

  • Affiliations:
  • Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China;Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China and School of Software, Shanghai Jiao Tong University, Shanghai, China;School of Software, Shanghai Jiao Tong University, Shanghai, China

  • Venue:
  • CC'11/ETAPS'11 Proceedings of the 20th international conference on Compiler construction: part of the joint European conferences on theory and practice of software
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Probabilistic points-to analysis is an analysis technique for defining the probabilities on the points-to relations in programs. It provides the compiler with some optimization chances such as speculative dead store elimination, speculative redundancy elimination, and speculative code scheduling. Although several static probabilistic points-to analysis techniques have been developed for C language, they cannot be applied directly to Java because they do not handle the classes, objects, inheritances and invocations of virtual methods. In this paper, we propose a context-insensitive and flow-sensitive probabilistic points-to analysis for Java (JPPA) for statically predicting the probability of points-to relations at all program points (i.e., points before or after statements) of a Java program. JPPA first constructs an interprocedural control flow graph (ICFG) for a Java program, whose edges are labeled with the probabilities calculated by an algorithm based on a static branch prediction approach, and then calculates the probabilistic points-to relations of the program based upon the ICFG.We have also developed a tool called Lukewarm to support JPPA and conducted an experiment to compare JPPA with a traditional context-insensitive and flow-sensitive points-to analysis approach. The experimental results show that JPPA is a precise and effective probabilistic points-to analysis technique for Java.