Parameterized object sensitivity for points-to analysis for Java

  • Authors:
  • Ana Milanova;Atanas Rountev;Barbara G. Ryder

  • Affiliations:
  • Rensselaer Polytechnic Institute, Troy, NY;Ohio State University, Columbus, OH;Rutgers University, Piscataway, NJ

  • Venue:
  • ACM Transactions on Software Engineering and Methodology (TOSEM)
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference variable or a reference object field. We present object sensitivity, a new form of context sensitivity for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method separately for each of the object names that represent run-time objects on which this method may be invoked. To ensure flexibility and practicality, we propose a parameterization framework that allows analysis designers to control the tradeoffs between cost and precision in the object-sensitive analysis.Side-effect analysis determines the memory locations that may be modified by the execution of a program statement. Def-use analysis identifies pairs of statements that set the value of a memory location and subsequently use that value. The information computed by such analyses has a wide variety of uses in compilers and software tools. This work proposes new versions of these analyses that are based on object-sensitive points-to analysis.We have implemented two instantiations of our parameterized object-sensitive points-to analysis. On a set of 23 Java programs, our experiments show that these analyses have comparable cost to a context-insensitive points-to analysis for Java which is based on Andersen's analysis for C. Our results also show that object sensitivity significantly improves the precision of side-effect analysis and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive points-to analysis that models context using the invoking call site. These experiments demonstrate that object-sensitive analyses can achieve substantial precision improvement, while at the same time remaining efficient and practical.