Parallel repetition of entangled games

  • Authors:
  • Julia Kempe;Thomas Vidick

  • Affiliations:
  • LIAFA & CNRS and Tel Aviv University, Paris, France;UC Berkeley, Berkeley, CA, USA

  • Venue:
  • Proceedings of the forty-third annual ACM symposium on Theory of computing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider one-round games between a classical referee and two players. One of the main questions in this area is the parallel repetition question: Is there a way to decrease the maximum winning probability of a game without increasing the number of rounds or the number of players? Classically, efforts to resolve this question, open for many years, have culminated in Raz's celebrated parallel repetition theorem on one hand, and in efficient product testers for PCPs on the other. In the case where players share entanglement, the only previously known results are for special cases of games, and are based on techniques that seem inherently limited. Here we show for the first time that the maximum success probability of entangled games can be reduced through parallel repetition, provided it was not initially 1. Our proof is inspired by a seminal result of Feige and Kilian in the context of classical two-prover one-round interactive proofs. One of the main components in our proof is an orthogonalization lemma for operators, which might be of independent interest.