A location prediction based routing protocol and its extensions for multicast and multi-path routing in mobile ad hoc networks

  • Authors:
  • Natarajan Meghanathan

  • Affiliations:
  • Department of Computer Science, Jackson State University, Jackson, MS 39217, United States

  • Venue:
  • Ad Hoc Networks
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper discusses a new location prediction based routing (LPBR) protocol for mobile ad hoc networks (MANETs) and its extensions for multicast and multi-path routing. The objective of the LPBR protocol is to simultaneously minimize the number of flooding-based route discoveries as well as the hop count of the paths for a source-destination (s-d) session. During a regular flooding-based route discovery, LPBR collects the location and mobility information of nodes in the network and stores the collected information at the destination node of the route search process. When the minimum-hop route discovered through flooding fails, the destination node locally predicts a global topology based on the location and mobility information collected during the latest flooding-based route discovery and runs a minimum-hop path algorithm. If the predicted minimum-hop route exists in reality, no expensive flooding-based route discovery is needed and the source continues to send data packets on the discovered route. Similarly, we propose multicast extensions of LPBR (referred to as NR-MLPBR and R-MLPBR) to simultaneously reduce the number of tree discoveries and the hop count per path from the source to each multicast group receiver. Nodes running NR-MLPBR are not aware of the receivers of the multicast group. R-MLPBR assumes that each receiver node also knows the identity of the other receiver nodes of the multicast group. Finally, we also propose a node-disjoint multi-path extension of LPBR (referred to as LPBR-M) to simultaneously minimize the number of multi-path route discoveries as well as the hop count of the paths.