On the relationships between synaptic plasticity and generative systems

  • Authors:
  • Paul Tonelli;Jean-Baptiste Mouret

  • Affiliations:
  • ISIR, Université Pierre et Marie Curie, Paris, France;ISIR, Université Pierre et Marie Curie, Paris, France

  • Venue:
  • Proceedings of the 13th annual conference on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The present paper analyzes the mutual relationships between generative and developmental systems (GDS) and synaptic plasticity when evolving plastic artificial neural networks (ANNs) in reward-based scenarios. We first introduce the concept of synaptic Transitive Learning Abilities (sTLA), which reflects how well an evolved plastic ANN can cope with learning scenarios not encountered during the evolution process. We subsequently report results of a set of experiments designed to check that (1) synaptic plasticity can help a GDS to fine-tune synaptic weights and (2) that with the investigated generative encoding (EvoNeuro), only a few learning scenarios are necessary to evolve a general learning system, which can adapt itself to reward-based scenarios not tested during the fitness evaluation.